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ABSTRACT
Smartphones have recently become a popular platform for deploy-
ing the computation-intensive virtual reality (VR) applications,
such as immersive video streaming (a.k.a., 360-degree video stream-
ing). One speci" c challenge involving the smartphone-based head
mounted display (HMD) is to reduce the potentially huge power
consumption caused by the immersive video. To address this chal-
lenge, we" rst conduct an empirical power measurement study on
a typical smartphone immersive streaming system, which identi" es
the major power consumption sources. Then, we developQuRate,
a quality-aware and user-centric frame rate adaptation mechanism
to tackle the power consumption issue in immersive video stream-
ing. QuRateoptimizes the immersive video power consumption
by modeling the correlation between the perceivable video quality
and the user behavior. Speci" cally, QuRatebuilds on top of the
userÕs reduced level of concentration on the video frames during
view switching and dynamically adjusts the frame rate without
impacting the perceivable video quality. We evaluateQuRatewith
a comprehensive set of experiments involving 5 smartphones, 21
users, and 6 immersive videos using empirical user head movement
traces. Our experimental results demonstrate thatQuRateis capa-
ble of extending the smartphone battery life by up to 1.24X while
maintaining the perceivable video quality during immersive video
streaming. Also, we conduct an Institutional Review Board (IRB)-
approved subjective user study to further validate the minimum
video quality impact caused byQuRate.
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1 INTRODUCTION
With the rapidly increasing computing capability and a huge con-
sumer market, modern commodity smartphones have become a
popular platform for the emerging computationally intensive vir-
tual reality (VR) applications [29, 43]. These applications can be
seamlessly integrated with the recently released VR head mounted
display (HMD) mounts, such as Google Cardboard [15], Google Day-
dream [16], Samsung Gear VR [38], DODOCase [37], and Archos
VR Glasses [2]. Moreover, smartphone-based HMDs have enabled
a brand new interface for presenting immersive video (a.k.a., 360-
degree video) content in the 360 degree of freedom controlled by
a userÕs head movements. Such immersive video streaming pro-
vides users with an enriched viewing experience as if they were
an integral part of the video and enables signi" cantly improved
quality of experiences (QoE) as compared to the traditional 3D or
high de" nition 2D videos [24].

However, the improved QoE provided by the immersive video
comes with signi" cant costs, such as high bandwidth consump-
tion and performance overhead while streaming the 360-degree
video frames [4]. Since the emergence of immersive streaming
applications, there have been many research e! orts focusing on
reducing the bandwidth consumption by employing view-based
optimizations [3, 18, 34, 35]. However,the community has not fully
investigated the power perspective of immersive video streaming.
Power consumption is a critical problem in immersive streaming for
two key reasons.First, the smartphone-based HMDs are driven by
power-constrained batteries.Second,intensive power consumption
can accumulate heat that would signi" cantly impact the viewing
experience of HMDs users due to the deviceÕs wearable nature. This,
in essence, makes power consumption an integral part of the QoE.

Although power optimization techniques have been proposed for
traditional 2D videos on smartphones [8, 19, 25, 52, 53] and wear-
able devices [23], these techniques cannot e! ectively reduce the
energy consumption of immersive streaming on smartphone HMDs.
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This is mainly due to the unique workload and power pro" le of im-
mersive streaming, described as follows.First,the volume of video
data in immersive streaming is huge (i.e., 6X to 8X of the traditional
video [40]), as the entire 360-degree frames must be transmitted
and processed. This incurs signi" cantly higher power consump-
tion of network and computation, thus leaving a large room for
further optimization even after the traditional power optimization
techniques are applied.Second,di! erent from traditional video
streaming, immersive streaming is a user-centric video application,
as it grants the viewers full control over the view angles via head
movements and generates the viewport from the 360-degree frame
on the smartphone upon each movement. Consequently, frequent
user movements would trigger non-trivial power consumption in
sensing, computation and view generation, which is not considered
by the traditional power optimization techniques. In summary, a
new and customized power management mechanism is essential in
achieving power e# ciency in immersive streaming.

In this work, we investigate the problem of reducing the power
consumption in immersive streaming systems. To address the afore-
mentioned challenges, we" rst conduct a quantitative power mea-
surement study (discussed in Section 3) of immersive streaming on
commodity smartphones. Our measurements indicate that theVR
view generationoperation consumes signi" cant power and is the
topmost power consumption source. Based on this observation, we
design a quality-aware frame rate adaptation mechanism to reduce
the power consumption. Our key idea is to reduce the frequency at
which the VR views are generated, i.e., reducing the frame rate of
immersive streaming dynamically. We consider the e! ect of frame
rate reduction on the perceivable video quality by leveraging an ob-
jective and quantitative video quality metric called spatio-temporal
video quality metric (STVQM) [33]. This metric correlates the per-
ceivable video quality with the frame rate and has been proved to
be consistent with the subjective quality metric (the mean opinion
score (MOS) [45]). We further leverage one of the unique character-
istics in immersive streaming, namely user-initiated view switching,
in the power optimization mechanism by following two key design
principles. (1)No frame rate reduction during ! xed view. The
mechanism maintains the original frame rate when viewers are
not switching views and only reduces the frame rate during view
switching. The rationale behind this principle is that, during a view
switching process, the viewerÕs attention is typically not at the view
being switched but rather the view being switched to and, there-
fore, the reduced frame rate during switching has limited impact
on the perceivable video quality. (2)Quality-aware frame rate
selection during view switch . The mechanism selects the optimal
frame rate to minimize power consumption under the video quality
constraint based on the STVQM metric.

We incorporate the above two principles and implement a new
frame rate adaptation mechanism calledQuRatefor smartphone-
based immersive video streaming, which optimizes the power con-
sumption in a quality-aware and user-centric manner.QuRatemon-
itors the user movement pattern at runtime and determines the
most power e# cient frame rate while maintaining the perceivable
video quality. Furthermore, to reduce the runtime performance
and power overhead introduced byQuRateitself, we develop an
o$ ine/online hybrid execution model. In theo! inephase, we build
a frame rate library (FRL), which quanti" es the correlations among

quality, frame rate, and head motion, through power/quality pro" l-
ing based on historical user data. In theonlinephase, the library
FRL is used to determine the instant frame rate based on the dy-
namic head movement and the quality constraint. We evaluate the
e! ectiveness ofQuRateby using real user head movement data and
measure the power consumption of immersive video streaming us-
ing " ve commodity smartphones. Our evaluation results show that
QuRatecan extend the smartphone battery life by up to 1.24X while
achieving satisfactory video quality based on a real user study.

To the best of our knowledge,QuRateis the" rst power optimiza-
tion framework for smartphone-based immersive video streaming
that considers both user behavior and video content. To summarize,
we have made the following contributions.

¥ We for the" rst time identify the unique problem of power con-
sumption ine# ciency in immersive video streaming based on
an empirical power measurement study. The observed ine# -
ciency can be attributed to the unique characteristics of immer-
sive streaming which are not considered by the traditional video
power optimization techniques.

¥ We develop an e! ective power optimization mechanism called
QuRatethat addresses the aforementioned power ine# ciency
problem for immersive streaming.QuRatetakes into considera-
tion both the unique user behavior and video content features
in immersive streaming to achieve power-e# cient frame rate
adaptation with minimum video quality impact.

¥ We evaluate and justify the signi" cant power savings and mini-
mum video quality impact achieved byQuRate. Our comprehen-
sive set of evaluations include empirical evaluations based on
empirical user head movement traces from a publicly available
dataset, as well as an IRB-approved user study.

2 BACKGROUND AND RELATED WORK
2.1 Immersive Video Streaming
Virtual reality technology can generate three-dimensional virtual
environments emulating the physical world, which provides the
users with an immersive experience [7]. It is widely used in many ar-
eas, such as gaming [36], healthcare [6], and entertainment videos [17,
35]. In a typical VR setup, the user wears a HMD device that dis-
plays the speci" c view based on head movements, similar to what
one would see in the physical world.

Among all the VR applications, immersive video streaming has
naturally become a hot spot because of the popularity of video
streaming in the consumer entertainment market [17, 35]. For ex-
ample, there are currently millions of immersive videos available
on YouTube, the number of which is rapidly growing on a daily
basis [51]. In particular, immersive video is attractive in scenar-
ios like live broadcasts of sports games, in which the viewers can
switch their views based on their own preferences, as if they were
watching the game in person in the stadium [30]. Figure 1 shows
a typical end-to-end work%ow of an immersive video streaming
system, following the ISO standard for Internet video streaming,
namely Dynamic Adaptive Streaming over HTTP (DASH) [42].
The end-to-end system follows a client/server architecture. On the
server side, thevideo packagerpartitions the source 360-degree
video into DASH compliant segments [42], which are deployed on a
web serverfor HTTP streaming. On the client side, theweb browser
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eyes in observing moving object. Normally, when the velocity of
an object is larger than 20 degree/second, the gain (i.e., the ratio
between eye velocity and object velocity) can no longer maintain
in the range of 0.9 to 1.0, which is required for the human vision
system to observe the object clearly [14]. In this case, corrective
saccades, a compensation mechanism that combines head and eye-
ball movements, is needed to realign the target. However, according
to [44], the possibility of error in corrective saccades is 29% - 79%
depending on the environment, which means corrective saccades
is highly unreliable and the eyes would still have blurred vision
while viewing a fast moving object.

Based on the above evidence and the scienti" c discovery from
the biology" eld, reducing the frame rate of VR video in a reason-
able range and while the userÕs view is fast switching would pose
insigni" cant impact to the user experience, because the view is
already blurred to begin with. This key observation serves as the
basis of our frame rate reduction method for power optimization,
which we present in details in the next subsections and further
justify using subjective user studies in Section 5.7.

4.2.2 Practical Frame Rate Adaptation.For a premium viewing
experience, the frame rate of immersive video is typically 60 FPS.
Since a large amount of computation must be conducted at the
rendering of each video frame (e.g., read the viewerÕs orientation,
locate the" eld of view within the 360-degree frame, and generate
the left and right views for the viewerÕs eyes), it leaves large room
for power savings by reducing the frame rate (i.e., the frequency
that the VR view is generated). However, since a reduced frame
rate may signi" cantly impact the video quality, we only conduct
such reduction while the user is switching views. Our intuitions are
two-fold. First, the video scene during fast view switching will be
low quality to begin with based on the discussions in Section 4.2.1;
Second, the video quality during view switching is non-critical to
the user experience, as it is an indication that user is interested in
the new view. Taking a 360-degree soccer video as an example, the
user would focus on a" xed view, such as two players grabbing the
soccer ball from each other. Then, when the ball is passed through
a wide range, the userÕs attention will switch and track the ball
until it reaches another" xed view. During the switching, i.e., while
both the userÕs orientation and the ball are in motion, the quality of
the video and thus the frame rate is much less critical to the userÕs
experience, which can be reduced without compromising the QoE.

Based on this observation, inQuRate, we maintain the original
frame rate while the view is" xed (i.e., motion speed below a noise
threshold) and only reduce the frame rate when the user switches
from the current view to a new view. The frame rate reduction
mechanism is shown in Algorithm 1, which employs theMotion
Detectorto determine whether the frame rate should be reduced.

4.3 Quality-Aware O # line Training and Online
Frame Rate Selection

Despite its obvious e! ectiveness in power savings, it is well known
that frame rate reduction would degrade the quality of the video
if not well controlled. Therefore, we must quantitatively evaluate
the quality loss due to frame rate reduction and develop a system-
atic approach to minimize it. As the" rst step in achieving this

ALGORITHM 1: Frame Rate reduction during view switching.

1: Let f la ! be the indicator of view switching, i.e., 1 refers to view
switching and -1 refers to view" xed;

2: Let S be the switching speed threshold;
3: Let Switchin! _Speedbe the current speed of view switching,

calculated byV RPose() API;
4: Function render()
5: if Switchin! _Speed! S then
6: f la ! " # 1;
7: else
8: f la ! " 1;
9: end if

10: if f la ! == 1 then
11: Reduce render frequency;
12: end if
13: V iewPoint " N ewV iewPoint;
14: end

goal, we adopt an objective video quality metric, namely spatio-
temporal quality metric (STVQM) [33] to evaluate the quality of
the immersive video under frame rate control, which considers the
interactions between spatial and temporal quality perceptions:

STVQM= SVQMá
1+ a áTIb

1+ a áTIb á (30/ FR)
, (1)

wherea andb are constants determined by a least-square non-linear
" tting using the subjective data, which leads toa = 0.028,b =
0.764; FR refers to frame rate; and SVQM (spatial video quality); TI
(temporal information) and SI (spatial information) are calculated
as [46]:

SVQM=
100

1+ e#(PSN R+" s áSI+" t áT I#µ)/ s
. (2)

T I = maxt ime {stdspace[Mn (i , j )]} , (3)

SI = maxt ime {stdspace[Sobel(Fn )]} , (4)

In Equation (4),stdspacestands for the standard deviation of the
pixels in one video frame,Sobel(Fn ) refers to the pixels in the video
frame at time pointn after being" ltered with a sobel" lter [41].
Mn (i , j ) in Equation (3) refers to the pixel di! erences between the
frames in the userÕs view of time pointsn andn # 1 at position(i , j ).
In addition,PSNRin Equation (2) refers to peak signal to noise
ratio, which is a commonly used video quality metric [20]. All other
constants are chosen by a least-square non-linear" tting algorithm
as described in [33], where! s = 0.0356, ! t = 0.236, µ = 36.9, and
s = 2.59.

The reason why we choose this metric is that it takes into account
both the motion in the video and the frame rate being applied. The
former (i.e., motion) matches well with the motion feature of the
immersive video, which includes both the motion in the original
video and that caused by user-initiated view switches. The latter
(i.e., frame rate) matches well with the proposed approach based
on frame rate control. Furthermore, according to [33], the STVQM
metric has been clearly justi" ed by the mean opinion scores from
well organized subjective experiments.

Based on the STVQM metric and representative user head move-
ment data (e.g., from [11]), we can calculate the quality-aware and
power-e# cient frame rate by rewriting Equation (1) as follows:
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ALGORITHM 2: Quality-aware frame rate selection.

1: Input Motion Speed (# );
2: Output Frame Rate (F R);
3: Set the minimum acceptable STVQM from o$ ine F RLasQ;
4: Function calcF rameRate(V )
5: Pose" V RDispla$.! etPose() // WebVR API [28]
6: V " Pose.l inearV elocit $(); // WebVR API
7: F R" F RL(V, Q); // Equation (6)
8: end

FR=
30áa áTIb áSTVQM

SVQMá (1+ a áTIb) # STVQM
. (5)

Following Equation (5), we can calculate the frame rate at the sys-
tem runtime based on the quality requirement of the target video.
However, we note that such an online frame rate calculation is
infeasible due to the complexity of Equation (5), which requires the
computations ofT I, SI, andSVQMevery time the video or user
motion varies at runtime. According to [33] and [46], such com-
putations involve pixel-level processing of one or multiple video
frames, which by itself incurs non-trivial performance and power
overhead and may o! set the power saving goal ofQuRate.

To address the challenge of the direct online mechanism, we
develop an o$ ine frame rate library, as presented in Figure 5, to
facilitate power-e# cient frame rate reduction at runtime. This li-
brary can be built using a dataset of user head movement data while
watching immersive videos. In particular, for each userui watching
each video" j , where1 ! i ! I , 1 ! j ! #, andI and #represents
the number of users and videos in the dataset, respectively, we
conduct the following three steps to build the frame rate library:

¥ Step 1, assign userui Õs movement data to an automatic view
switching algorithm and play/record the VR video" j with user
ui Õs movement;

¥ Step 2, calculate theTI andSI values of the recorded video fol-
lowing Equations (3) and (4), as well as theSVQMvalue following
Equation (2); and

¥ Step 3, employ Equation (1) to calculate the STVQM value for
video" j at userui Õs view switching speed and all possible frame
ratesFR(e.g., 10, 20, ..., 60).

We repeat the above three steps for all the user-video pairs and
obtain the following lookup table:

FR= FRL(" ,Q), (6)

whereFRLrepresents the frame rate library, which is not a closed
form equation but presented as a lookup table obtained from the
user/video dataset;" is the user motion speed available inFRL
that is closest to the instant motion speed of the target user; and
Q is the objective video quality that the user aims to maintain.
The generatedFRLenables us to determine the power e# cient
frame rate for a new user. In particular, the parametersQ and"
are corresponding to the quality-aware and user-centric design
principles inQuRate, respectively.

Based on the o$ ine frame rate library in Equation (6), we de-
velop the online algorithm for frame rate adaptation, as shown in
Algorithm 2. The algorithm selects the best frame rate based on

the current userÕs view switching speed, which is determined by
QuRatethrough the sensors on the smartphone HMD.

4.4 Estimating Power Consumption
During our experiments, we have noticed that manual power evalu-
ation is a tedious process for each user-video pair. For example, for a
one-minute video, we must spend at least one minute for the video
playback and roughly another minute for preparing the test and
collecting the results. In addition, the measurement noise is very
common due to the complexity of the smartphone [8]. Other than
that, the power measurement requires re-structuring the intercon-
nection of the battery component, which increases the uncertainty.
The experiment also needs to be paused frequently to cool down the
system and avoid the inaccuracy caused by the generated heat. To
overcome these challenges, we develop an analytical power model
for the immersive video streaming system. This power model is
based on the power measurement samples we have obtained and
can be used to analyze the power consumption with theQuRate
scheme. In this way, we can estimate the power consumption after
only measuring the power once in the default case. This is helpful
in tuning the power optimization framework (e.g., adjusting the
threshold values).

Theoretically, when the frame rate is adjusted to a constant
value, the average power consumption during the playback can be
estimated using the following equation:

PEst. = (1# $) áPDef . + $ áPDef . á
FR

FRDef .
, (7)

wherePEst. refers to the estimated power consumption with the
frame rate control,$ refers to the percentage of power consumed
by view generation over the total power consumption,PDef . is the
actual power consumption with the default frame rateFRDef . , and
FRis the constant value that the frame rate is adjusted to.

We further expand Equation (7) to consider the case that the
frame rate is varying during the playback (i.e., after adopting the
QuRatescheme), as shown below:

PEst. = (1# $) áPDef . + $ áPDef . á
n!

i =1

(%i á
FRi

FRDef .
), (8)

wheren is the number of di! erent frame rates, and%i is the fre-
quency of each frame rateFRi that appears during the video play-
back. In this way, we can estimate the power consumption after
only measuring the power once in the default case. This is help-
ful in tuning the power optimization framework (e.g., adjusting
the threshold values). In Section 5.4, we evaluate the accuracy of
our predictive power model for immersive video streaming under
varying frame rates.

5 EVALUATION
We evaluateQuRatewith the goal of understanding its e# ciency in
power savings and the potential impact, if any, on the perceivable
quality of the video. In particular, we" rst measure and compare the
power consumption in the cases with and withoutQuRateusing
empirical head movement data. Then, we evaluate and justify the
power analytically model by comparing the modeled power results
with the empirical measurements. Also, we conduct battery stress
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test to further verify the power evaluation results in empirical user
settings. Last but not least, we carry out IRB-approved subjective
QoE evaluations with human subjects involved, which proves the
minimum impactQuRateposes on the perceivable video quality.

5.1 Experimental Setup
We adopt the same system setup (i.e., the power monitor and" ve
smartphones) as in Section 3 for our evaluation ofQuRate. Also,
based on the test videos described in Table 4 obtained from the
publicly available head movement dataset [11], we select 21 out of
59 users who have watched the same set of 6 videos (referred to as
Videos 1 to 6 hereafter based on Table 4). We calculate the switching
speeds of the 21 users based on the timestamps and orientation
coordinates provided by the dataset, as shown in Equation (9),
whereSi represents the switching speed of the orientation vector
Oi from timett #1 to ti .

Si =
arccos(

$Oi á $Oi #1
%Oi % %Oi #1%)

ti # ti #1
. (9)

For each video, we rank the 21 users based on the average speed of
each user watching all the 6 videos. In order to study the impact of
the userÕs view switching speed, we select 4 representative users
for each video to construct the o$ ine frame rate library (e.g., for
Video 1, we select User 8 ranked 19th, User 3 ranked 14th, User 7
ranked 8th, and User 6 ranked 5th), as shown in Table 5. In this
process, our selection criterion is to cover high, medium, and low
ranked user groups.

5.2 O# line Frame Rate Library Creation
We build the o$ ine frame rate library by calculating the STVQM
values for all the 6 videos following Equation (1), as shown in Table
4, where the STVQM score refers to the quality of the video itself
(i.e., without applying the usersÕ movement). Then, we use the
STVQM scores to categorize the motions of the 6 videos intoslow,
medium, andfast based on the understanding from [33], where a
slower motion video obtains a lower STVQM score.

Next, we apply the head movements of selected users from Table
5 to each video and calculate all the parameters (e.g., TI and SI)
using Equations (1) to (2) with a TI and SI calculator [46] and a
screen recorder [32] as described in Section 4.3. Finally, we plot 4
curves representing the frame rate library (i.e., Equation (6)) for
each video to indicate the relationship between the video quality
and the frame rate under di! erent view switching speeds, as shown
in Figure 6. Each curve in Figure 6 represents one user and thus
indicates the behavior of one switching speed for the video. We
observe that for each video, a faster switching speed requires lower
frame rate at the same STVQM. This matches with our intuition
that a fast switching view indicates the userÕs lack of interest in the
current view, which allows us to reduce the frame rate while still
maintaining the premium video quality.

For each video in Figure 6, we choose the video quality of users
with the lowest switching speed at 60 FPS as the target video qual-
ity (e.g., we select the STVQM objective as 48 for Video 1). After
applying the 4 usersÕ switching speeds to Figure 6, we build the
frame rate library to facilitate the online frame rate selection for an
arbitrary new user, as shown in Table 4. We consider any switching

speed slower than the slowest speed in Table 5 as a" xed view, for
which we apply the highest frame rate (i.e., 60 FPS). Based on our
statistical analysis of the 21 users, the percentages of" xed views
in the 6 test videos are 36%, 33%, 37%, 37%, 32%, and 35%, which
indicate large (more than 60%) room for power reduction.

5.3 Online Quality-aware Frame Rate Selection
Evaluation Method. We choose 10 users that are not involved in
Table 5 for each video (i.e., Users 10 - 19) as the test user set to
evaluate the e! ectiveness ofQuRateat the online stage. For these
10 users, we" rst calculate their average switching speeds, e.g., the
solid curve in Figure 7 shows the view switching speed of User 10
watching Video 1. Then, based on the frame rate library, we assign
a frame rate to each second of the video, as presented by the dashed
curve in Figure 7. For example, at the 30th second, if the switching
speed of User 10 watching Video 1 is faster than the fast switching
speed in the frame rate library, we choose the frame rate as 20 FPS.

Feasibility Evaluation. We conduct a feasibility evaluation
to validate our hypothesis that users typically spend non-trivial
amount of time in view switching and thus enable the opportu-
nity for applying QuRatefor power savings. Figure 8 summarizes
the frequencies of view switches that are beyond the pre-de" ned
threshold speed for frame rate reduction (i.e., considered as a view
switch byQuRate), which are based on the public dataset [11]. We
observe that the average frequency of view switching for all the 60
user/video combinations is 22.8%, with the highest of 68.1%, which
indicates potential opportunities for power savings viaQuRate.
Furthermore, the switching frequencies demonstrate noticeable
dependencies on individual users, which justi" es the necessity of
the user-centric principle adopted byQuRate.

Power Evaluation and Comparison. In order to evaluate the
performance ofQuRate, we apply each userÕs head movement data
to Algorithms 1 and 2. Then, we measure the power consumption
and video quality of each user watching the videos with two other
cases for comparison: (1) no frame rate reduction (i.e., theDefault
case); and (2) noQuRatefor quality control (i.e., theNaivecase).
Figure 9 summarizes the average power consumption of 10 users
(i.e., Users 10 - 19) watching each video in the three cases on the LG
V20 phone, whereNaivemeans reducing the frame rate to the lowest
value (i.e., at 10 FPS) without considering the quality impact. Figure
10 presents the runtime video quality (i.e., the STVQM value) of each
case with User 10 watching the 6 videos. The standard deviations of
the curves are 15.37 - 15.85 (Default), 3.97 - 3.90 (QuRate), and 4.20 -
4.30 (Naive). Furthermore, we repeat the experiments with Users 10
- 14 on Samsung S7, Moto G5, and LG G5, the results of which are
shown in Figure 11. We observe that theNaivecase saves the most
power (27.57% to 43.89%) in our evaluations. However, it also results
in the lowest video quality as shown in Figure 10. Also, the default
frame rate achieves the highest video quality most of the time. Yet,
it is highly unstable (i.e., the standard deviation can be up to 15.85)
and consumes the highest power. After applying theQuRatescheme,
the power consumption is reduced by a considerable amount (5.62%
to 32.74%) with relatively consistent video qualities, as compared
to theDefaultcase. In addition, we notice that by usingQuRate, the
power consumption distribution is much larger than the other two
approaches. We believe this is becauseQuRateis user motion related,
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